
GPE EcrDll API Ver. 01.04

Date: 21.3.2016
1

The API description of the GpeEcrCommLib.dll

Version 1.04

Created 1.7.2015

Last change 21.3.2016

Author Pavel Perman

Pos Protocol ver. 12.18, B0

Release history

Date Version Description
1.7.2015 1.00 Draft – base functionalities

31.7.2015 1.01 Revision related to the reference implementation

3.8.2015 1.02 Revision related to the first integration

15.1.2016 1.03 Revision hypertext links

21.3.2016 1.04 Revision of return codes

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
2

Content
The API description of the GpeEcrCommLib.dll ... 1

Release history ... 1

Integration schema .. 3

Processing schema ... 4

Transaction interface ... 5

Transaction class table .. 5

Register callback methods .. 9

Administrative interface ..11

Parameter interface ..12

Tag description ...16

Return codes table ...19

Description of log format ...20

Definition of the configuration file ..20

Supported operating system ...20

Conclusion ...20

FAQ ..21

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
3

Integration schema
This part shows the mechanism of integration the library into a host code. The easiest way of
integration is using the predefined the source code but it is not necessary. The source can be
used as an example of the integration. If the CommonCADWrapper module is not supplied it
is better to do it on customer site. It is possible to access direct to GpeEcrCommLib API of
course.

The open source code (Module) named CommonCADWrapper has several roles:

 To shield library specific interface and define common interface for the client code

 Facilitate parameters manipulation and 100% backwards compatibility

 Creating independent intermediate layer for other logic and specific functions aimed to

this purposes (checking and conversion data, etc).

GpeEcrCommLib.dll

Operating system Win 32/64

CommonCADWrapper

Physical Interface

GPE Terminal

ECR HOST code

Img 1. Integration schema

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
4

Processing schema
This part of the specification describes the specific transaction flow. The payment is the base

flow which it has to be implemented and it is the most difficult than other transactions. The

points of the flow are described below.

Run Transaction

POS terminal

Send

Request

Receive

Response

Invoke

Print Receipt

Callback 2x

Signature

Required ?

Merchant

Customer

Bulid Data

Parse Data

Yes
Invoke

Dialog

Callback

No

Signature

OK?

Yes

Reversal
No

Run Purchase

P
ri
n

t
R

u
ti
n

e
D

ia
lo

g

R
u

ti
n

e

GpePosLib API

A
u

th
o

ri
z
a

ti
o

n
 C

e
n

te
r

Img 2. Processing schema

 Start transaction by call API function RunTransaction. The library build the POS
request and sends it to the POS.

 The POS terminal processes the transaction and sends back the response.

 The library parse the data and check if the print data is available. If yes, the library
invokes the callback for printing data.

 The library checks if the check signature is required or not. If yes, the library invokes
the signature dialog.

 If the dialog is confirmed the library ends the transaction. If the dialog is not confirmed
the library runs the reversal transaction internally and the processing flow is the same
as previous. Library check the response data and probably invoke the print callback
and ends the transaction (signature is no required for the reversal).

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
5

Transaction interface
This interface encapsulates the group of transactions which are passed to the terminal through
the specific communication protocol (designed by GPE). Every transaction is identified by its
class ID. Each transaction can be executed by call function PosLib_RunTransaction.

Restrictions

The library interface is created by the several functions. These functions are described in the
several chapters below. The description of these function doesn’t specify the calling
conversion. The calling convention is __stdcall the base but for the more portability it is
possible to require compilation with another calling convention like __cdecl or other. The
__stdcall is the base due to the library exports the callback functions. Several host technologies
doesn’t support another calling convention for callbacks, e.g. C#.

The Library is not designed for multi-thread processing. The library use the hardware devices
which is not possible to use simultaneously. The library can run inside only one process or
thread.

Transaction class table

Class
ID

Transaction Class description

1 Purchase Normal purchase or purchase

2 Purchase with Cashback As the purchase plus cashback amount

3 Refund Normal Refund

4 Void Reversal of the last transaction – not supported yet

5 Pre-Authorization Amount Preauthorization – not supported yet

6 Authorization Completion Completion of the previous preauthorization – not
supported yet

7 CloseTotals It summarizes the transactions and it clears the totals on
terminal and the authorization HOST.

8 SubTotals It summarizes the transaction but it doesn't clear the
totals. It’s for common checks through day.

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
6

Transaction response codes

TrxResult Description

Approved codes [0-10]

0 Transaction approved

10 Transaction approved for a partial amount

Declined codes [50 - 100]

50 Transaction declined (On the host, by the processing, timeout, etc.)

51 Unable to connect with Central Systems

53 A response from the Central System was not delivered

55 Decline by chip card without authorization

56 Declined by Authorization system (online transaction)

60 Transaction was cancelled by the operator

61 Transaction was cancelled by the customer

62 Customer rejected transaction due to amount

63 Processing exceeded the designated time limit

70 Transaction was not cancelled

71 Currency not supported (Multicurrency)

100 Transaction not supported or not allowed

101 Invalid card

107 Error in MAC

200 Mandatory field missing

500 Internal POS Application Error

The response codes are sent form the terminal and is not generated by the DLL component.

int GpePosLib_RunTransaction (int classId, int rootId)

The function executes the transaction on the terminal according to the specific class Id. The
input parameters are in the specific TLV tree format which it is not binary dependent. The
parameters of transaction are in the table below for each class ID.

@Parameters:

[In] classId Identification of the transaction. The types and count of values
are defined according the transaction table.

[In] rootId reference to Input/Output parameter TLV tree. The parameters
of the tree are listed in the ref. Parameter interface.

@Return: Return codes table

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
7

Mandatory and optional fields according to class ID. The details about the fields are
chap.Tag description.

Purchase [class 1]

Input elements Output elements

Mandatory Optional Mandatory Optional

Amount Currency code Terminal ID Amount

 Invoice Number TimeStamp Expiration date

 TrxResult Card name

 Authorization code Unique Transaction ID

 Card PAN [Masked] AID

Purchase with Cashback [class 2]

Input elements Output elements

Mandatory Optional Mandatory Optional

Amount Currency code Terminal ID Amount

Cashback Amount Invoice Number TimeStamp Expiration date

 TrxResult Card name

 Authorization code Unique Transaction ID

 Card PAN [Masked] AID

Refund [class 3]

Input elements Output elements

Mandatory Optional Mandatory Optional

Amount Currency code Terminal ID Amount

 TimeStamp Expiration date

 TrxResult Card name

 Authorization code Unique Transaction ID

 Card PAN [Masked] AID

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
8

Close totals[class 7]

Input elements Output elements

Mandatory Optional Mandatory Optional

 Summary Terminal ID Summary

 TimeStamp

 TrxResult

Subtotals [class 8]

Input elements Output elements

Mandatory Optional Mandatory Optional

 Summary Terminal ID Summary

 TimeStamp

 TrxResult

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
9

Register callback methods
These functions has to be registered by external hosted code. These functions are invoked
inside the transaction process. These callback methods ensure the signature checks and
printing receipt on the ECR in time when the transaction flow needs. The display callback is
designed for transferring terminal screen into the ECR and this callback could not be
registered. Registering printing and dialog callbacks are mandatory.

int (* pFcDispCb) (char *pText, enum codepage, int flgTst) - It’s not supported yet

This data type is used for call function which it is dedicated for display messages. The
message are transferred from the terminal to ECR. This functionality is not supported by the
POS protocol yet. For this function timeout is not defined. The message could be displayed
on the status line/windows form until new message comes.

@Parameters:

[In] pText pointer to formatted text

[In] codepage codepage identification ref. enum CP_IDX_E

[In] flgTst Test flag, if this flag is set the function return 0 without any
action. The flag is set only in registration process for checking
validity of the function reference.

@Return: 0 – (success) Display message Ok

 Other – Failed

int (* pFcPrnCb) (char *pText, enum codepage, int imd, int flgTst) - mandatory

This data type is used for call function which it is dedicated for printing tickets on the ECR.
The text is formatted for the specific codepage which is passed in parameter codepage.The
codepage is transferred from the POS terminal.

@Parameters:

[In] pText pointer to formatted text

[In] codepage codepage identification ref. enum CP_IDX_E

[In] imd immediate printing, the text must be print immediate. It can be a
transaction receipt or warning ticket.

[In] flgTst Test flag, if this flag is set the function return 0 without any
action. The flag is set only in registration process for checking
validity of the function reference.

@Return: 0 – (success) Printer Ok

 Other – Failed

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
10

Supported dialogs

Supported codepages in table (enum CP_IDS_E)

Functions below is used for register callback methods

int (* pFcDlgCb) (int dialogId, int flgTst) - mandatory

This data type is used for call function which it is dedicated for display dialogs according to
its dialog ID. The dialog callback function is for getting reaction of the operator on the library
events (especially for signature check). The dialog is identified by its ID. It is the best way how
to ensure the correct text localization to different languages. All text are stored in the host Ecr
program and library invokes only the specific one according to the Id.

@Parameters:

[In] dialogId Dialog id identifies the real dialog which the library needs to
decide.

@Return: 0 – (success) dialog confirmed

 Other – Failed or dialog not confirmed

Dialog ID Title Text pattern

1 The signature comparison Please compare the signature on the receipt and on
the card. Are these signatures the same? Yes/No

Idx Codepage
ID

Description

1 ISO-8859-1 Use for English texts (display, printing tickets, etc.)

2 ISO-8859-2 Used for Czech, Slovak, Polish, Hungarian texts (display, tickets,
etc.) 3 ISO-8859-3

Used for Turkish texts (display, printing tickets, etc.)

5 ISO-8859-5 Used for Bulgarian texts (display, printing tickets, etc.)

int GpePosLib_RegisterPrintCB (pFcPrnCb pPrinterCB)

The function registers the callback for printing the text while the transaction is processed
(receipts or warning tickets).

@Parameters:

[In] pPrinterCB pointer to function which prints the text on the ECR printer.

@Return: Return codes table

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
11

Administrative interface
This part of guide contains specific functions which are dedicated for DLL administration
(Initialization, load parameters, close and etc).

int GpePosLib_RegisterDisplayCB (pFcDispCb pDispCB)

 The function registers the callback for display the text while the transaction is processed
(The message from the screen of the connected terminal).

@Parameters:

[In] pDispCB pointer to function which displays text on the ECR screen.

@Return: Return codes table

int GpePosLib_RegisterDialogCB (pFcDlgCb pDialogCB)

 The function registers the callback for display the dialog on the ECR. The dialog is intended
to invoke on end of the transaction for check the signature (if the transaction flow requires it)
but it can be used for another purpose in a future.

@Parameters:

[In] pDialogCB pointer to function which displays text on the ECR screen.

@Return: Return codes table

int GpePosLib_OpenLibrary (char *pPathCfg)

The function initializes the transaction context and load the parameter file.
@Parameters:

[In] pPathCfg null-terminated string contains the path to the configuration file. If it is
 not specified the config file is searched in the same folder as DLL.

@Return: Return codes table

int GpePosLib_CloseLibrary (void)

 The function close all opened peripherals and release allocated memory. It belongs to the
good programmer practice to call it.

@Parameters: none

@Return: Return codes table

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
12

Parameter interface
All parameters are passed by TLV tree mechanism. The root is created by the function call
GpePosLib_CreatePrmTree. This function returns id of structure which contains the reference
to input and output elements subtree. This approach is more flexible that a static structure and
easier than a XML. It’s assumed that the exported interface could be changed related to new
properties, functions or fixing bugs as well. This mechanism allows to modify application
parameter interface without any direct impact to backwards compatibility, stability and
robustness. The TLV tree is implemented statically due to minimalize problem with memory
leaks. This approach doesn’t allow to create several trees (by calling the CreatePrmTree func.)
simultaneously. It is possible to create only one tree for the current transaction. On the end of
the transaction is necessary to call function to release tree which re-initialize the static content
of the tree. The parameter application interface is designed for free migration to dynamic
allocation of the parameter tree (in a future) regardless to this parameter interface.

Root

Element

Class

Input

 elements

Output

elements

Tag Amount

Value

GpePosLib_CreatePrmTree()

SubTree

Tag Summary

Tag

SumDebit

Value
Tag

SumCredit

Value

Tag SumCB

Value

Tag ...

Value

Tag

TerminID

Value

Tag

TrxResult

Value

SubTree

Tag Summary

Tag

SumDebit

Value
Tag

SumCredit

Value

Tag SumCB

Value

Tag ...

Value

GpePosLib_GetTag()

GpePosLib_GetSubTree()

GpePosLib_GetTag()

GpePosLib_GetTag()

Reference to

output elements

GpePosLib_GetTag()

Reference to

input elements

GpePosLib_AddTag()

GpePosLib_AddSubTree()

GpePosLib_AddTag()

GpePosLib_AddTag()

Img. 3. Structure of the parameter tree.

int GpePosLib_GetVersion (void)

 The function returns the version number of the loaded library. The version of the library has
the MS format like: 1.2.3.4 = 0x01020304.

@Parameters: none

@Return: version number in binary format.

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
13

int GpePosLib_CreatePrmTree (int classId)

 The transaction create the parameter tree which is used for the input and output parameters
of GpePosLib_RunTransaction. The parameter tree MUST be created for each transaction.
There is no possible to use the same reference for next transaction. After the transaction is
finished it MUST be called GpePosLib_ReleasePrmTree() function.

@Parameters:

[In] classId Class id of the prepared transaction.

@Return: >0 - pointer to rootId of the new tlvTree

 0 - failed

int GpePosLib_GetInputTree (int rootId)

 The function retrieves the input part of the parameter tree. This part specifies the input
parameters.

@Parameters:

 [In] rootId rood id of the tree which is returned by GpePosLib_CreatedPrmTree()

@Return: =>0 - id of the input parameter tree.

 <0 error, Return codes table

int GpePosLib_GetOutputTree (int rootId)

 The function retrieves the output part of the parameter tree. This part specifies the output
parameters. Detail of the transaction.

@Parameters:

[In] rootId rood id of the tree which is returned by GpePosLib_CreatedPrmTree()

@Return: =>0 - id of the input parameter tree.

 <0 error, Return codes table

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
14

int GpePosLib_GetIntTag (int treeId, int tag)

The function retrieve the int value of the tag which was previously set by
GpePosLib_AddIntTag().

@Parameters:

[In]treeId the treeId is returned by function call GpePosLib_GetInputTree () or
 GpePosLib_GetOutputTree().

[In] tag tag number according to the table Tag description.

@Return: >=0 is expected value of the tag

 Error: Return codes table (especially GPE_APP_TAG_...)

int GpePosLib_AddIntTag (int treeId, int tag, int value)

 The function add the integer value of the tag. The tag specifies the type of parameter.

@Parameters:

[In]treeId the treeId is returned by function call GpePosLib_GetInputTree () or
 GpePosLib_GetOutputTree().

[In] tag tag number according to the table Tag description.

[In] value the value of the parameter.

@Return: 0 - OK

 Return codes table (especially GPE_APP_TAG_...)

int GpePosLib_GetStringTag (int treeId, int tag, char *pValue)

The function retrieve the string value of the tag which was previously set by
GpePosLib_AddStringTag().

@Parameters:

[In]treeId the treeId is returned by function call GpePosLib_GetInputTree () or
 GpePosLib_GetOutputTree().

[In] tag tag number according to the table Tag description.

[In] pValue value of the tag

@Return: 0 - OK

 Return codes table (especially GPE_APP_TAG_...)

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
15

int GpePosLib_AddStringTag (int treeId, int tag, char *pValue)

 The function set the string value into the tag. The tag specifies the type of parameter.

@Parameters:

[In]treeId the treeId is returned by function call GpePosLib_GetInputTree () or
 GpePosLib_GetOutputTree().

[In] tag tag number according to the table Tag description

[In] value the value of the parameter.

@Return: 0 - OK

 Return codes table (especially GPE_APP_TAG_...)

int GpePosLib_AddSubTree (int treeId, int tag)

The function add the tag to parameter tree which hold the specific parameter value.
@Parameters:

[In] tree parent Tree id returned by function call GpePosLib_GetInputTree () or
 GpePosLib_GetOutputTree()

[In] tag tag number according to the table Tag description.

@Return: !0 - pointer to created new TLV sub tree

 0 – failed

int GpePosLib_GetSubTree (int tag)

@Parameters:

[In] tag tag number according to the table Tag description.

@Return: !0 – returns the tree id of the subTree previously created by
 GpePosLib_AddSubTree().

 0 – failed or it doesn’t exist

int GpePosLib_ReleaseTree (int rootId)

The function releases the parameter tree which has been created by previous call function
GpePosLib_CreatePrmTree(). The function call ensure re-initialize static TLV tree.

@Parameters:

 [In] rootId root of the tree

@Return: 0 - OK

 Return codes table

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
16

Tag description
This part descripts parameters tag which are used for execution of transactions. All tag are

intended as Integer or ANSI string. There is no possible to create other type of tags. The format

of the data is specified by the tag. The valid data is in the table below. The data with integer

type added as a string value causes error and vice versa.

TAG specification

TAG Name Type Len Description

0 Root N 1 [I/O] - Default

1 Terminal ID AN String

6-8

[O] - Terminal identification. This number is registered in the

authorization center.

2 Timestamp String

N

String

12

[O] - Timestamp of the transaction used by the protocol

messages.

3 Amount N int [I/O] - Amount must be >0 and < 9 999 999, 99. Amount must

be without decimal places. If the currency supports decimal

places the amount must be multiplied correspondingly (i.e. for

CZK x 100). Max. 9 999 999,99

4 CBAmount N int

[I] - CashBack amount. The format is the same as Amount

5 Currency N int [I] - Currency code according to ISO 4217 (CZK 203, EUR

978, …)

6 Authorization

Code

V String

1-8

[I/O] - The authorization code identifies the transaction on

the authorization host.

7 CardName V String

1-20

[O] - It specifies the name of card which it was used for the

transaction.

8 PAN V String

9-19

[O] – Primary Account Number

9 respCode N Int [O] - Transaction response code. Detail is in the

Transaction response codes table.

10 InvoiceNumber N String

1-10

[I] - The invoice number is place on the receipt ticket and can

be propagated to host.

11 ExpirDate N String

4

[O] – expiration date of the used card

12 CodePage N int [O] – codepage of the receipt text. The value is index into the

Supported codepages table.

13 AID AN String [O] - It specifies the chip card application ID

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
17

* note: [O] means input parameter, [I] – means output parameter, [I/O] – both.

1-24

14 SequenceNo N String

1-10

[I/O] - It specifies the number for preauthorization and

completion.

15 TrxId N String

12

[O] - Unique transaction ID generated on the terminal for

each approved transaction.

16 Summary struct ---- [I/O] – On this tag is necessary to create subtree which it

holds the group of summery tags. Totals summary which is

compared with the host. The description is in the table

below. If the Summary tag not used (it’s optional) terminal

used its own summary.

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
18

SubTree tag contains the all the summary tags.

TAG Name Type Len Description

100 RootSummeryTree --- --- The root tag

101 DebitCount N Int Count of the Purchase transactions

102 DebitSum V String

19

String value contains summary of the

purchase trx. It must be signed and

left-padded by 0 to full 18 chars..

Example: “+000000000000200000”

2000,00 Kč It contains also cashback

amount.

103 CreditCount N Int Count of the Refund transactions

104 CreditSum V String

19

String value contains summary of the

refund trx. It must be signed and left-

padded by 0 to full 18 chars..

105 CBCount N Int Count of the Cashback transactions.

106 CBSum V String

19

String value contains only cashback

summary amount.

Example:

2 debit transaction in the total amount of CZK 2000.00
1 credit transaction for CZK 100.00
1 Cashback for CZK 300.00

101 = 2 102 = +000000000000200000
103 = 1 104 = +000000000000010000
105 = 1 106 = +000000000000030000

Tag type

Abbr. Name Description

A Alfa Containing A-Z, a-z characters

N Numeric Field with Numerical characters

(containing only 0-9 characters) AN Alfa-Numeric 0-9, A-Z, a-z

V Visible hexadecimal values 0x20 up to 0x7E

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
19

Return codes table
Return codes are valid for all functions.

Return code Description

<0 / -49> Common errors

0 Success – no error occurred

-1 No input parameters

-2 Library not found or it cannot be loaded

-3 Mandatory callbacks (Dialog, Print) are not registered

-10 General error – not further specified

<-50/-99> Application errors

-50 Application interface was not initialized

-51 Application data is not available

-52 Application data is not valid

-53 Bad or mismatches input parameters – mandatory data is missing

-70 (Tlv tree) Tag general error

-71 (Tlv tree) Tag format error

-72 (Tlv tree) Tag not found

-73 (Tlv tree) Tag unknown format

<-100 / -199> Transaction errors

-100 Transaction process interrupted

-108 Transaction is in the progress or terminal is busy

<-200 / -299> Communication errors

-200 Terminal not found or terminal not responding

-201 There is not response from the terminal – Response timeout

-202 General communication error with the terminal – Communication
corrupted (CRC, Format errors)

-203 Open/Initialization of the communication channel error

<-300 / - 500> Unknown, undefined or system error – the reason is not specified,
the transaction is in unknown state, detail in the log file

-300 Unexpected error

-500 Internal application error – from dll

-501 Internal application error – from terminal

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
20

Description of log format
The GpeEcrCommLib.dll created the logs with the internal process and communication
between the terminal and dll. The log is the main part for resolving problems.

Definition of the configuration file
The GpeEcrCommLib needs to be configurable by the configuration file which is placed in the

program folder. The location of the conf. file is handed over by calling API function

PosLib_GpeOpenLibrary (). There is no possible to configure the dll directly through the API

function at the run-time. The best way is placed conf. file into the same folder as the

GpeEcrCommLib.dll

Supported operating system
The library was developed and tested on:

 Windows 7 Professional 32Bit/64Bit, SP 1

 Windows XP Professional 32Bit, SP 3

Known problems

Conclusion
GPE disclaims liability for errors in the examples and managed open source parts. If you find

any error or mistake in documentation, please contact GPE APV POS department.

GPE EcrDll API Ver. 01.04

Date: 21.3.2016
21

FAQ
This section will be made up of the frequent questions of ECR integrators.

